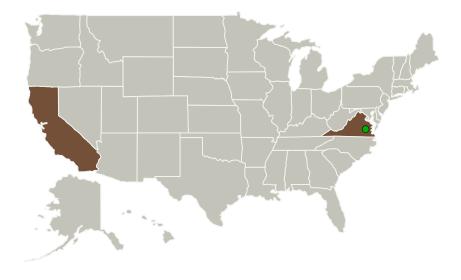
Energy Production for Sustainable Planetary Explorations, Phase I



Completed Technology Project (2011 - 2012)

Project Introduction

Our basic approach is to use a photoelectrochemical cell operated under simulated Mars conditions. The light source will be solar simulator with a wide spectrum of emitted light. On Mars wavelengths of light down to 190 nm reach the surface (compared to Earth where only 300 nm and above reaches the surface). The soil will be the JSC.Mars 1 stimulant which is known to contain 10% TiO2 (in partial reduced forms) and is supposed to be a good analog for the surface soils on Mars. We will consider two possible sources of H2O: first water flowing as liquid from below the surface of the soil and second water deposited as condensate on the surface of the soil. Additional two types of photocatalysts will be evaluated for methane conversion efficiencies: off shelf low cost TiO2 (P25), and doped TiO2 nanostructures (nanotubes and nanowires) for broader solar wavelength absorptions.

Primary U.S. Work Locations and Key Partners

Energy Production for Sustainable Planetary Explorations, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Energy Production for Sustainable Planetary Explorations, Phase I

Completed Technology Project (2011 - 2012)

Organizations Performing Work	Role	Туре	Location
LC Tech	Lead Organization	Industry Minority-Owned Business, Women- Owned Small Business (WOSB)	Palo Alto, California
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia
University of Southern California(USC)	Supporting Organization	Academia	Los Angeles, California

Primary U.S. Work Locations	
California	Virginia

Project Transitions

0

February 2011: Project Start

February 2012: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138979)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

LC Tech

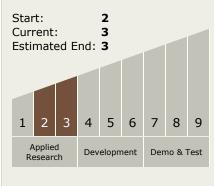
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Jinbo Yang

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Energy Production for Sustainable Planetary Explorations, Phase I

Completed Technology Project (2011 - 2012)

Technology Areas

Primary:

- TX07 Exploration Destination Systems
 - ☐ TX07.1 In-Situ Resource Utilization
 - ☐ TX07.1.2 Resource
 Acquisition, Isolation,
 and Preparation

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

